ANNEX V ## Sources of Greenhouse Gas Emissions Excluded Although this report is intended to be a comprehensive assessment of anthropogenic 1 sources and sinks of greenhouse gas emissions for the United States, certain sources have been identified yet excluded from the estimates presented for various reasons. Before discussing these sources, however, it is important to note that processes or activities that are not *anthropogenic in origin* or do not result in a *net source or sink* of greenhouse gas emissions are intentionally excluded from a national inventory of anthropogenic greenhouse gas emissions. In general, processes or activities that are not anthropogenic are considered natural (i.e., not directly influenced by human activity) in origin and, as an example, would include the following: - Volcanic eruptions - Carbon dioxide (CO₂) exchange (i.e., uptake or release) by oceans - Natural forest fires² - Methane (CH₄) emissions from wetlands not affected by human induced land-use changes Some processes or activities may be anthropogenic in origin but do not result in net emissions of greenhouse gases, such as the respiration of CO₂ by people or domesticated animals.³ Given a source category that is both anthropogenic and results in net greenhouse gas emissions, reasons for excluding a source related to an anthropogenic activity include one or more of the following: - There is insufficient scientific understanding to develop a reliable method for estimating emissions at a national level. - Although an estimating method has been developed, data were not adequately available to calculate emissions. - Emissions were implicitly accounted for within another source category (e.g., CO₂ from Fossil Fuel Combustion). It is also important to note that the United States believes the exclusion of the sources discussed below introduces only a minor bias in its overall estimate of U.S. greenhouse gas emissions. ## Separate Cruise and LTO Emissions from the Combustion of Jet Fuel The combustion of jet fuel by aircraft results in emissions of CH₄, N₂O, CO, NO_x, and NMVOCs. The emissions per mass of fuel combusted during landing/take-off (LTO) operations differ from those during aircraft cruising. Accurate estimation of these emissions requires a detailed accounting of LTO cycles and fuel consumption during cruising by aircraft model (e.g., Boeing 747-400) as well as appropriate emission factors. Sufficient data for separately calculating near ground-level emissions during landing and take-off and cruise altitude emissions by aircraft model were not available for this report. (See *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual*, pp. 1.93 - 1.96) ¹ The term "anthropogenic", in this context, refers to greenhouse gas emissions and removals that are a direct result of human activities or are the result of natural processes that have been affected by human activities (IPCC/UNEP/OECD/IEA 1997). ² In some cases forest fires that are started either intentionally or unintentionally are viewed as mimicking natural burning processes that have been suppressed by other human forest management activities. The United States does not consider forest fires within its national boundaries to be a net source of greenhouse emissions. $^{^3}$ Respiration of CO_2 by biological organisms is simply part of the broader global carbon cycle that also includes uptake of CO_2 by photosynthetic organisms. ## CO₂ from Burning in Coal Deposits and Waste Piles Coal is periodically burned in deposits and waste piles. It has been estimated that the burning of coal in deposits and waste piles would represent less than 1.3 percent of total U.S. coal consumption, averaged over tenyears. Because there is currently no known source of data on the quantity of coal burned in waste piles and there is uncertainty as to the fraction of coal oxidized during such burnings, these CO_2 emissions are not currently estimated. Further research would be required to develop accurate emission factors and activity data for these emissions to be estimated (see *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual*, p. 1.112 - 1.113). # Fossil CO₂ from Petroleum and Natural Gas Wells, CO₂ Separated from Natural Gas, and CO₂ from Enhanced Oil Recovery (EOR) Petroleum and natural gas well drilling, petroleum and natural gas production, and natural gas processing—including removal of CO_2 —may result in emissions of CO_2 that was at one time stored in underground formations. Carbon dioxide and other gases are naturally present in raw natural gas, in proportions that vary depending on the geochemical circumstances that caused the formation of the gas. After the heavier gases are removed during processing, small amounts of carbon dioxide may be allowed to remain in the natural gas. If the amount of CO_2 sufficiently lowers the heating value of the natural gas, it is typically extracted by amine scrubbing and, in most cases, released into the atmosphere. These emissions can be estimated by calculating the difference between the average carbon dioxide content of raw natural gas and the carbon dioxide content of pipeline gas. The Energy Information Administration (EIA) estimates that annual CO_2 emissions from scrubbing are about 15 Tg CO_2 Eq. Because of imprecision in the reporting of U.S. natural gas production and processing, emissions estimates from energy production sources may be double-counted or under-reported, and thus are uncertain. Carbon dioxide is also injected into underground deposits to increase crude oil reservoir pressure in a field technique known as enhanced oil recovery (EOR). It is thought that much of the injected CO_2 may be effectively and permanently sequestered, but the fraction of injected CO_2 that is re-released remains uncertain. The fraction rereleased varies from well to well depending upon the field geology and the gas capture/re-injection technology employed at the wellhead. Over time, carbon dioxide may also seep into the producing well and mix with the oil and natural gas present there. If the gas portion of this mixture has a sufficiently high energy content, it may be collected and sent to a natural gas plant; if not, it may be vented or flared. The EIA estimates that the amount of CO_2 used for EOR is on the order of 44 Tg CO_2 Eq., of which emissions would be some fraction yet to be defined. This figure is based on the difference between U.S. Department of Commerce sales figures for industrial CO_2 (62 Tg CO_2 Eq.) minus the 18 Tg CO_2 Eq. reported by the Freedonia Group that is used for purposes other than EOR. Further research into EOR is required before the resulting CO_2 emissions can be adequately quantified. (See Carbon Dioxide Consumption in the Industrial Processes chapter). ### **Carbon Sequestration in Underground Injection Wells** Data for sequestration of carbon in underground injection wells is obtained from the EPA Toxic Release Inventory (EIA 2000). The carbon content of wastes reported in the EPA TRI as being injected into underground injection wells is estimated from the TRI data, and the carbon is assumed to be sequestered. The sequestration of underground injection carbon is one of the many elements in calculating the storage factor for petrochemical feedstock (see Annex B). The "base year" for this storage factor calculation is 1998 and only EPA TRA data for calendar year 1998 is used in the storage factor calculation. Further research is required if the entire time series for this potential sink is to be fully quantified. #### CH₄ from Abandoned Coal Mines Abandoned coal mines are a source of CH₄ emissions. In general, many of the same factors that affect emissions from operating coal mines will affect emissions from abandoned mines such as the permeability and gassiness of the coal, the mine's depth, geologic characteristics, and whether it has been flooded. A few gas developers have recovered methane from abandoned mine workings; therefore, emissions from this source may be significant. Further research and methodological development is needed if these emissions are to be estimated. (See Coal Mining in the Energy chapter.) #### CO₂ from "Unaccounted for" Natural Gas There is a discrepancy between the amount of natural gas sold by producers and that reported as purchased by consumers. This discrepancy, known as "unaccounted for" or unmetered natural gas, was assumed to be the sum of leakage, measurement errors, data collection problems, undetected non-reporting, undetected over reporting, and undetected under reporting. Historically, the amount of gas sold by producers has always exceeded that reportedly purchased by consumers; therefore, some portion of unaccounted for natural gas was assumed to be a source of CO₂ emissions. In other words, it was assumed that consumers were underreporting their usage of natural gas. In DOE/EIA's energy statistics for 1996, however, reported consumption of natural gas exceeded the amount sold by producers. Therefore, the historical explanation given for this discrepancy has lost credibility and unaccounted for natural gas is no longer used to calculate CO₂ emissions. ### CO₂ from Shale Oil Production Oil shale is shale saturated with kerogen.⁴ It can be thought of as the geological predecessor to crude oil. Carbon dioxide is released as a by-product of the process of producing petroleum products from shale oil. As of now, it is not cost-effective to mine and process shale oil into usable petroleum products. The only identified large-scale oil shale processing facility in the United States was operated by Unocal during the years 1985 to 1990. There have been no known emissions from shale oil processing in the United States since 1990 when the Unocal facility closed. ### CH₄ from the Production of Carbides other than Silicon Carbide Methane (CH₄) may be emitted from the production of carbides because the petroleum coke used in the process contains volatile organic compounds, which form CH₄ during thermal decomposition. Methane emissions from the production of silicon carbide were estimated and accounted for, but emissions from the production of calcium carbide and other carbides were not. Further research is needed to estimate CH₄ emissions from the production of calcium carbide and other carbides other than silicon carbide. (See *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual*, pp. 2.20 - 2.21) #### CO₂ from Calcium Carbide and Silicon Carbide Production Carbon dioxide is formed by the oxidation of petroleum coke in the production of both calcium carbide and silicon carbide. These CO₂ emissions are implicitly accounted for with emissions from the combustion of petroleum coke in the Energy chapter. There is currently not sufficient data on coke consumption to estimate emissions from these sources explicitly. (See *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual*, pp. 2.20 - 2.21) ## CO2 from Graphite Consumption in Ferroalloy and Steel Production Emissions from "graphite" "wood" or "biomass" in calculating CO_2 emissions from ferroalloy production, iron and steel production or other "Industrial Processes" included in Chapter 3 of the inventory are not explicitly calculated. It is assumed that 100% of the carbon used in ferroalloy production is derived from petroleum coke and that all of the carbon used in iron and steel production is derived from coal coke or petroleum coke. It is possible that some non-coke carbon is used in the production of ferroalloys and iron and steel, but no data are available to conduct inventory calculations for sources of carbon other than petroleum coke and coal coke used in these processes. ⁴ Kerogen is fossilized insoluble organic material found in sedimentary rocks, usually shales, which can be converted to petroleum products by distillation. Non-fuel uses of coal coke and petroleum coke are accounted for in the Industrial Process chapter, either directly for iron and steel, aluminum, ferroalloy, and titanium dioxide production, or indirectly by applying a storage factor to "uncharacterized" non-fuel uses of petroleum coke and coal coke. Non-fuel uses of wood and biomass are not accounted for in the Energy or Industrial Process chapters, as all uses of wood and biomass are accounted for in the Land Use and Forestry chapter. It is assumed for the purposes of the CO₂ emission calculation that no wood or other biogenic carbon is used in any of these industrial processes. Some biogenic carbon may be used in these industrial processes but sufficient data to estimate emissions are not available. Consumption of either natural or synthetic graphite is not explicitly accounted for in the Industrial Process chapter. It is assumed that all of the carbon used in manufacturing carbon anodes for production of aluminum, ferroalloys, and electric arc furnace (EAF) steel are derived directly from petroleum coke and coal tar pitch (a coal coke byproduct), not from natural graphite or synthetic graphite sources. Some amount of carbon used in these industrial processes may be derived from natural or synthetic graphite sources, but sufficient data to estimate emissions are not currently available. ## N₂O from Caprolactam Production Caprolactam is a widely used chemical intermediate, primarily to produce nylon-6. All processes for producing caprolactam involve the catalytic oxidation of ammonia, with N_2O being produced as a by-product. Caprolactam production could be a significant source of N_2O —it has been identified as such in the Netherlands. More research is required to determine this source's significance because there is currently insufficient information available on caprolactam production to estimate emissions in the United States. (See *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual*, pp. 2.22 - 2.23) ## N₂O from Cracking of Certain Oil Fractions In order to improve the gasoline yield in crude oil refining, certain oil fractions are processed in a catcracker. Because crude oil contains some nitrogen, N₂O emissions may result from this cracking process. There is currently insufficient data to develop a methodology for estimating these emissions. (See *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual*, p. 2.23) #### CH₄ from Coke Production Coke production may result in CH_4 emissions. Detailed coke production statistics were not available for the purposes of estimating CH_4 emissions from this minor source. (See Petrochemical Production in the Industrial Processes chapter and the *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual*, p. 2.23) #### CO₂ from Metal Production Coke is used as a reducing agent in the production of some metals from their ores, including magnesium, chromium, lead, nickel, silicon, tin, and zinc. Carbon dioxide may be emitted during the metal's production from the oxidization of this coke and, in some cases, from the carbonate ores themselves (e.g., some magnesium ores contain carbonate). The CO₂ emissions from the carbonate ores are not presently accounted for, but their quantities are thought to be minor. (See *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual*, p. 2.37 - 2.38) ### N₂O from Acrylonitrile Production Nitrous oxide may be emitted during acrylonitrile production. No methodology was available for estimating these emissions, and therefore further research is needed if these emissions are to be included. (See *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual*, p. 2.22) ## SF₆ from Aluminum Fluxing and Degassing Occasionally, sulfur hexafluoride (SF_6) is used by the aluminum industry as a fluxing and degassing agent in experimental and specialized casting operations. In these cases it is normally mixed with argon, nitrogen, and/or chlorine and blown through molten aluminum; however, this practice is not used by primary aluminum production firms in the United States and is not believed to be extensively used by secondary casting firms. Where it does occur, the concentration of SF_6 in the mixture is small and a portion of the SF_6 is decomposed in the process (Waite and Bernard 1990, Corns 1990). It has been estimated that 230 Mg of SF_6 were used by the aluminum industry in the United States and Canada (Maiss and Brenninkmeijer 1998); however, this estimate is highly uncertain. ## SF₆ from Production/Leakage/Breakage of Soundproofed Double-glazed Windows Sulfur hexafluoride (SF₆) may be emitted from the production, breakage, or leakage of soundproof double-glazed windows. No methodology was available for estimating these emissions, and therefore further research is needed if these emissions are to be included. ### SF₆ from Production/Leakage/Dismantling of Radar, Tracer and Night Vision Equipment Sulfur hexafluoride (SF_6) may be emitted from the production, leakage, and dismantling of radar, tracer, and night vision equipment. Emissions from this source are believed to be minor, and no data were available for estimating the emissions. ## SF₆ from Applications in Sports Shoes, Tires, and Tennis Balls Sulfur hexafluoride (SF₆) may be emitted from application involving the production of sport shoes, tires, and tennis balls. These emissions are believed to be minor, and no data were available for estimating emissions. ## SF₆ from Applications to Trace Leakage of Pressure Vessels and Used as a Tracer Gas in Open Air Sulfur hexafluoride (SF₆) may be emitted from application involving tracer gasses to detect leakage from pressure vessels and as a tracer gas in the open air. Although emissions from this source are believed to be minor, emissions estimation data and methodologies were not available. ## Miscellaneous SF₆ Uses Sulfur hexafluoride may be used in foam insulation, for dry etching, in laser systems, for indoor air quality testing, for laboratory hood testing, for chromatography, in tandem accelerators, in loudspeakers, in shock absorbers, and for certain biomedical applications. Data need to be gathered and methodologies developed if these emissions are to be estimated. A preliminary global assessment of aggregate emissions from these applications can be found in Maiss, M. Brenninkmeijer, and C.A.M. Brenninkmeijer (1998). #### CO₂ from Solvent Incineration Carbon dioxide may be released during the incineration of solvents. Although emissions from this source are believed to be minor, data need to be gathered and methodologies developed if these emissions are to be estimated. Solvents are hazardous wastes, and emissions from solvent incineration were taken into account to estimate the carbon the carbon storage factor for hazardous waste incineration. However, sufficient data is not available to obtain a complete time series estimate for this source category. Further research is required for these potential emissions to be fully quantified. ### N₂O from Domestic House Animal Waste Deposited on Soils A substantial amount of liquid and solid waste is produced by domestic animals that are kept as pets. A preliminary methodology was developed to estimate nitrous oxide (N_2O) emissions from the deposition of domestic house animal (i.e., dogs and cats) waste on lawns, fields and parks. Estimates calculated with this methodology suggest that, in 1990, approximately 330 Gg of nitrogen originating as domestic house animal waste were deposited on soils resulting in approximately 2.9 Tg CO_2 Eq. of N_2O emissions from soils. To estimate the amount of nitrogen deposited by domestic house animals, only those excretions that remained on land surfaces—as opposed to wastes that were collected by owners and are managed as municipal solid waste—were included. Annual dog and cat population numbers were obtained from the Pet Food Institute.⁵ Annual nitrogen excretion rates were estimated from protein intake. The recommended protein intake for an average size adult of each animal type⁶ was multiplied by the average amount of nitrogen per unit of protein (0.16 kg N/kg protein, from the *Revised 1996 IPCC Guidelines*) to estimate nitrogen consumption. It was then assumed that 95 percent of this nitrogen was excreted, either in solid or liquid form (i.e., it was assumed that 5 percent was retained for fur and milk production). Of the total nitrogen excretion, 90 percent was assumed to occur through liquid waste, with the balance from solid waste⁷. Both cat and dog populations were divided into urban and rural fractions, using the metropolitan and non-metropolitan human population categories, respectively, of the U.S. Census Bureau⁸. Both liquid and solid wastes from the urban cat population, and solid waste from the urban dog population were assumed to be collected (i.e., not deposited on soils). Nitrous oxide emission estimates from domestic house animal excretion were calculated in the same manner as performed for estimating emissions from livestock excretion. Producing these estimates involved making a number of simplifying assumptions regarding average animal size and protein consumption, as well as the proportions of animal populations residing in urban and rural areas and the proportions of wastes that are deposited on land. Further methodological development and data collection is required in order to reduce the uncertainty involved in the domestic house animal excretion estimates. ## CO₂ from Food Scraps Disposed in Landfills A certain amount of food scraps generated from food processing or as leftovers join the waste stream and are landfilled. Nationally, an estimated $0.4~\mathrm{Tg~CO_2}$ Eq. per year are stored in the form of organic carbon contained in food scraps in landfills, acting as a carbon sink. A portion of the landfilled food scraps becomes a source of methane emissions, which offset the sink estimates to an extent. Further data collection on the amount and composition of food scraps generated and landfilled is required in order to reduce the uncertainty associated with this estimate. ### CO₂ from Industrial Waste Combustion Waste combustion is incorporated in two sections of the energy chapter of the inventory: in the section on CO_2 emissions from waste combustion, and in the calculation of emissions and storage from non-energy uses of fossil fuels. The former section addresses fossil-derived materials (such as plastics) that are discarded as part of the municipal wastestream and combusted (generally for energy recovery). The latter addresses two types of combustion: hazardous waste incineration of organic materials (assumed to be fossil-derived), in which regulated wastes are burned without energy recovery, and burning of fossil-derived materials for energy recovery. There is one potentially significant category of waste combustion that is not included in our calculus: industrial non-hazardous waste, burned for disposal (rather than energy recovery). Data are not readily available for this source; further research is needed to estimate the magnitude of CO_2 emissions. ## CH₄ from Land-Use Changes Including Wetlands Creation or Destruction Wetlands are a known source of methane (CH_4) emissions. When wetlands are destroyed, CH_4 emissions may be reduced. Conversely, when wetlands are created (e.g., during the construction of hydroelectric plants), CH_4 emissions may increase. Grasslands and forestlands may also be weak sinks for CH_4 due to the presence of methanotrophic bacteria that use CH_4 as an energy source (i.e., they oxidize CH_4 to CO_2). Currently, an adequate scientific basis for estimating these emissions and sinks does not exist, and therefore further research and methodological development is required. $^{^{5}}$ Pet Food Institute (1999) Pet Incidence Trend Report. Pet Food Institute, Washington DC. ⁶ Bright, S. (1999) Personal communication between Marco Alcaraz of ICF Consulting and Susan Bright of the Dupont Animal Clinic, Washington, DC, August 1999. ⁷ Swenson, M.J. and W.G. Reece, eds. (1993) *Duke's Physiology of Domestic Animals*. Cornell University Press. 11th Edition. ⁸ U.S. Census Bureau (1999) http://www.census.gov/population/estimates/metro-city/ma96-08.txt ## N₂O from Wastewater Treatment and Biological Processes As a result of nitrification and denitrification processes, nitrous oxide (N_2O) may be produced and emitted from large-scale composting, small scale composting (e.g. households), post-composting of anaerobic digested wastes, and both domestic and industrial wastewater treatment plants. Nitrogen-containing compounds are found in composted wastes and wastewater due to the presence of both human excrement and other nitrogen-containing constituents (e.g. garbage, industrial wastes, animal carcasses, etc.) The portion of emitted N_2O that originates from human excrement is currently estimated under the Human Sewage source category- based upon average dietary assumptions. The portion of emitted N_2O that originates from other nitrogen-containing constituents is not currently estimated. Further research and methodological development is needed if these emissions are to be accurately estimated. ## CH₄ from Large and Small Scale Composting Methane (CH₄) may be released through large and small scale (e.g. household) composting. Detailed composting data is necessary in order to estimate emissions but were not available. CH₄ from Treatment of Dredging Sludge, Remediation of Groundwater, Intermediate Storage of Slaughter Waste, Production of Process Water from Groundwater, and Post Composting of Anaerobic Digested Wastes. Methane (CH₄) may be released through the treatment of dredging sludge, remediation of groundwater, intermediate storage of slaughter waste, production of process water from groundwater, and post composting of anaerobic digested wastes. No methodology was available for estimating these emissions, and therefore further research is needed if these emissions are to be included. N₂O from Applications of Anesthetics in Healthcare, Consumer Packaging of Whipped Cream, Fireworks, Applications as Party-drug/Horns/Balloons, Laboratories, Engine Booster Fuel, and Explosives. Nitrous oxide (N_2O) may be released from an esthetic in healthcare (i.e. dentists, doctors, veterinarians, and elderly care), consumer packaging of whipped cream, fireworks, applications as party-drug/horns/balloons, laboratories, engine booster fuel, and explosives. Although emissions from these sources are believed to be minor, emissions estimation data and methodologies were not available. ## References EPA (2000b). Toxics Release Inventory, 1998. U.S. Environmental Protection Agency, Office of Environmental Information, Office of Information Analysis and Access, Washington, DC. Available online at http://www.epa.gov/triexplorer/chemical.htm>.